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Abstract:
In this paper we investigate analytical and numerical approaches for solving fractional

diffusion and advection—diffusion equations involving the fractional Laplacian operator. Due
to the inherent complexity of fractional-order models, obtaining closed-form solutions remains
a challenging task. We use spectral definition of Fractional Laplacian (—A)a/2 on a bounded
domain Q. We use eigenfunctions to find analytical solution. To validate and compare the
analytical approach, we implement a numerical method based on DST with IMEX Backward
Euler scheme. We analyze the effect of the fractional order a on the solution profiles. Our
results indicate that higher values of a approach classical diffusion behavior, while lower

values exhibit heavy-tailed distributions characteristic of anomalous diffusion.

1. Introduction:
The advection—diffusion equation (ADE) serves as a fundamental mathematical tool for

representing numerous physical systems across pure and applied sciences. Its significance is
particularly evident in the study of transport phenomena, where it offers a natural and intuitive
framework. In this context, advection refers to the bulk transport of matter caused by fluid
motion, while diffusion captures the spontaneous tendency of particles to migrate from regions
of higher concentration toward regions of lower concentration over time. This equation
underlies the modeling of diverse real-world processes: movement of atmospheric pollutants
such as smoke and dust, migration of contaminants in groundwater, dispersion of solutes in
chemical solvents, intrusion of seawater into freshwater aquifers, and even thermal pollution
in river systems. Because of these applications, the ADE has become a central subject of
research across environmental science, heat and mass transfer, chemical engineering, and
biological modelling.

Historically, the one-dimensional form of ADE has been widely studied. Classic
examples include heat transfer in draining films [1], water movement in soils [2], saltwater
intrusion into aquifers and pollutant transport in rivers [3], pollutant dispersion in shallow lakes
[4], absorption of chemical species in solid beds [5], cooling of rigid materials by fluid flows
[6], and thermal pollution in rivers [7]. Different numerical approaches have been employed to
solve variations of the ADE. El-Baghdady and EI-Azab applied the Legendre pseudospectral
method to parabolic ADEs with variable coefficients and Dirichlet boundary conditions [8].
Prabhakaran and Doss developed a finite volume scheme for the one-dimensional case [9].
Closed-form approximations for nonlinear heat and mass diffusion equations with Dirichlet
and Neumann conditions were investigated by Hristov [10]. Buske et al. [11] analyzed a
coupled Navier—Stokes—ADE system to model pollutant concentration and wind-driven
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transport using the Adomian decomposition method. Grant and Wilkinson [12] studied a
homogeneous ADE involving a time-dependent diffusion tensor, drift velocity, and absorbing
boundaries.

More recently, interest has shifted toward fractional-order extensions of diffusion
models. AlRefai [13] investigated both linear and nonlinear fractional differential equations
and established conditions for solution existence. With the growing prominence of fractional
calculus, extensive reviews [14-17] have highlighted its role in describing anomalous diffusion
and memory effects. Two widely used operators, the Riemann-Liouville (R-L) and Caputo
fractional derivatives, have been shown to capture realistic system dynamics [18-20].
However, each presents challenges: the R—L derivative yields physically inconsistent results
such as a nonzero derivative for constants, while the Caputo derivative—although resolving
these issues—relies on a singular kernel that complicates computation.

Within fractional modelling, along with Grunwald-Letnikov and Riemann—Liouville
definitions, the fractional Laplacian A—a/2 where a € (0,2) plays a central role due to its
multiple equivalent representations [21]. Yet, difficulties arise when the problem is posed on
bounded domains: in such settings, different mathematical interpretations must be invoked to
handle boundary conditions [22,23]. The literature, however, has not yet reached agreement on
which formulation of the fractional Laplacian is the most appropriate for bounded-domain
applications [28-30]. In this work we use spectral approach of defining Fractional Laplacian.

This work adopts the Riesz fractional Laplacian approach, following the methodology
of Li et al. [24], to model long-distance forward and backward tracer transport on a bounded
domain . We solve the resulting Fractional Advection-Diffusion Equation (FADE) [25] using
sine eigenfunction expansion and then we use spectral Discrete Sine Transform with IMEX
(Implicit - Explicit) Backward Euler for numerical comparison.

This paper investigates analytical and numerical solutions for fractional diffusion
equations governed by a fractional Laplacian operator. The structure of the paper is as follows:
Section 2 establishes the mathematical foundation, beginning with the classical diffusion
equation and extending it to the anomalous case via the fractional Laplacian using spectral
definition. In Section 3, we give analytical solution to the Fractional Advection-Diffusion
Equation (FADE) using, while section 4 deals with the numerical solution using Discrete sine

transform and IMEX Backward Euler technique. We give conclusion in section 5.
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2. Mathematical Formulation
2.1  The Classical Diffusion Equation

A linear diffusion equation over a computational domain € is given by [26]:

Ou(w,t) ’ ,
5 DAu(x,t), z € SZ’ 1)

where D is the diffusion coefficient and A represents the Laplacian operator, X is general spatial
coordinate, t is time and u(x,t) represents concentration at position x in time t. The boundary
conditions vary as per the model of diffusion. In real situations the conditions could be more
complex than the usual, such as Dirichlet, Neumann and mixed boundary conditions.

2.2 Anomalous Diffusion

For sufficiently smooth and decaying functions u(x,t), the fractional Laplacian is defined as
an integral operator defined over the domain Rn . It is characterized by its definition as a
pseudodifferential operator with the symbol |k|a as follows [27]:

(—A)a/2u(x) = F-1[[k|aF(u)], o> 0. @)

where F represents the Fourier transform applied over the entire space Rn , and F—1 denotes
Fourier inverse transform. When a = 2 , Equation (2) simplifies to the familiar spectral
representation of the classical Laplace operator (—A).

The fractional Laplacian can be expressed using hypersingular integral as follows [27]:

A y(x) = o PV 715(:@ — u.(y)(' o'
(—A)*2u(z) = C pvl/m o ypan W0 €0D L

where P.V. denotes the principal value integral, Cn,o is normalization constant, which is given
22 1ol ((a+n)/2)
by V7"I'(1 —a/2) and I'(z) denotes the gamma function.

A key implication of Equation (3) is that evaluating the fractional Laplacian (—A)a/2u(x) at a
point X € Rn depends on the function u over the entire domain.

This global dependence poses a significant challenge for practical applications, where
tracer transport must be modeled within bounded domains. Unlike its classical counterpart, the
fractional Laplacian’s theoretical framework and numerical treatment on bounded domains are
less developed. A primary difficulty is reconciling its inherent nonlocality with finite
computational domains. This nonlocality introduces complications such as broken translational
invariance and long-range spatial correlations when boundary conditions are present [28]. One
common strategy for defining the operator on a bounded domain Q is to restrict the real-space

definition in Formula (3) to Q, resulting in the so-called Riesz fractional Laplacian [21]
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(—A)2u(z) = O, / u:,r a0+ / u(x) — uJ(ry) dy.
‘T _ .Jln « Jrm\o IZE _ fy|n. o (4)

2.3 Definitions and Preliminaries

Definition 1 (The Schwartz space). The Schwartz space S(R") is the space of all smooth
functions f : R"— C such that f and all its derivatives decay faster than the reciprocal of any
x*0° f(x)| < oo Vo, € Nj}

polynomial at infinity. e SR") ={f € C®R") : supycpn

Definition 2 (Fourier Transform). The Fourier transform of a function f(x) € S(R") is defined

as:

FOO} =T = frn  f(¥)e?™<dx.  (5)
Definition 3 (Inverse Fourier Transform). The inverse Fourier transform of a function f (&) €
S(R") is defined as: Z

FHIOY =100 =fpn  f(e¥™dE  (6)
Definition 4. Laplacian (Spectral Definition). Let Q = (0,L) and consider the Dirichlet

Laplacian operator —A on Q. The eigenvalue problem is given by
_Aqbn(x) - }‘;2; qﬁ?l(x)a Te (0, L), On(o) — On(L) — 0 (7)

The normalized eigenfunctions are

On(2) :sin(?) : n = 1,2,...,(8)
with eigenvalues
\, T
¥ 9)
The fractional Laplacian (—A)*? with 1 <o < 2 is then defined spectrally as
(—A)*2¢n () = X5 Gn(), (10)

Definition 5. Sine Expansion. Any function f € L?(0,L) satisfying homogeneous Dirichlet

boundary conditions can be expanded in terms of the sine eigenfunctions:

=Y hoae) nla) = sin ("
D ) TbML)m)

with Fourier sine coefficients

_ % ﬁ " f(:r:)siIl(?) d“"'(12)
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Remark 1. Orthogonality. The sine eigenfunctions form an orthogonal basis in L?(0,L),

satisfying

/ L ('m.:fr:z:) _ (fn_.m;) ; 0, m#n,
sin — ) sin| — ) dz =
0 L L £

2 ?

m = 71(13)

Definition 6. Inner Product. The inner product on L2(0,L) is defined by

(f.9) f @)

3. Analytic Solution on a Finite Interval with Dirichlet Boundary

Conditions

We consider the space-fractional advection—diffusion equation

00((;,?5) r _Uacégizt) — D(=A)?2C(z,t), ze(0,L), t> 0’ (15)

with initial condition

R

C(x,0) = Co(x), x € (0,1), (16)
and Dirichlet boundary conditions

C0,5))=C(L,1) =0, t>0, (17)
whereR>0,veER,D>0,and 1 <a<2.
Theorem 1. The fractional advection difusion equation given in (15) with initial condition

(16) and boundary condition (17) satisfies
= [2 [F nwé 1 o nmwr
C(x,t) = |i—/ Co(€) sin( ) d&] exp [—— (’t’— + D )t} sin{ —
> |7, L R (%) )= (7)
Proof. For the finite interval, we expand C(x,t) in the sine eigenfunctions of the Laplacian

operator with Dirichlet boundary conditions:

Ot = S eou(a),  oufe) = sin("0) 09)
n=1 .

The eigenfunctions satisfy
nimw

) 2
~Adu() = () 6ula)
so that the fractional Laplacian acts as
nmw (8] .
(~8)0,(x) = (F) dule)
Substituting into the PDE and projecting onto ¢n, we obtain for each mode:

de, (t)
R dt = -0 /\n (n( ) Djuﬂ /n(/)’ (20)
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where

nim nmwy\«
)\n — T, b — (_)
L * L) .

Thus, each coefficient satisfies an ODE:

de, () 1

— _ - (.u)\n + Dp,.n)(:n (¢). (21)

1 ()

cn(t) = ¢, (0) exp{ B (vAn + D,u,n)t]

where the initial modal coefficient is obtained from the sine expansion:

L -
cn(0) = % / Co(x) Sin(?) dx. 23)
Jo

Hence, the solution is given by the sine series:

Clat) = i E /O'L Col€) sin($) dg} &b {—% (L% + D(’;—ﬂ)")t] sn("70) . (24)

n=1

Remark 2. Classical Advection-Diffusion (a = 2) When a = 2, the operator (—A)*? reduces to

the standard Laplacian, and the modal decay rate simplifies to

1 1 nmw nm\ 2

Thus, the solution becomes

Oty =Y E f Col6) sin($) dg} exp{—% (U% T D(%)Z) t] an("70). (29)

n=1

This recovers the standard Fourier sine series solution of the classical advection-diffusion
equation with homogeneous Dirichlet boundary conditions.

4. Spectral (FFT/DST) solution with IMEX Backward- Euler

We solve the initial-boundary value problem given by (15),(16) and (17) using spectral DST
with IMEX Backward Euler.

4.1 Grid and discrete transforms
We choose a uniform interior grid with N interior points

and use the discrete sine transform pair consistent with the sine-eigenbasis for Dirichlet

boundary conditions.
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N

kmj
uj:Zﬁksin(NT:l), j=1,...,N.
k=1

With this convention the discrete sine modes correspond to the continuous eigenfunctions

sin(kzx/L) evaluated at x; because sin (77) = ‘“111(1\41).

The spectral derivative is computed from the sine coefficients:

N ;
Dpu(x;) ~ ) U (%) COS(;?J

k=1 . (28)

The spectral action of the spectral fractional Laplacian is diagonal in the sine basis:

&
(—/_\)“/z(sink%) : (i%r) sink%

so in coefficient space we have the multipliers

Ap = (k—;)a k=1.....N.

4.2 IMEX Backward—Euler time discretization

Let u"j= u(x;,t") denote the solution at time t" = nAt. We discretize in time using an IMEX

Backward—Euler scheme: treat fractional diffusion implicitly and advection explicitly:

yntt oy

RLN—J = —v (GT'U,)J” — D ((—A)“fz'tt);Jrl

Project (i.e. take the discrete sine transform (26)) of both sides. Using linearity and the

diagonal action of the fractional Laplacian in the sine basis, we obtain (for each mode K):

R N ~n o ~n
@ =) = —v (), — DA (29)
Rearranging gives the explicit formula used in the algorithm:
R ~ /l"“—-_ e
o AV (Ozu),,
U, = 5
— + DA,
Ar TP (30)
Equivalently we can write
,TTH—I Ra]? o At v @:
'L =
k R+AtDA, . (31)
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4.3 FFT/DST algorithm
1. Set parameters. Choose N (number of interior points), time step At, final time T, grid

Xj=JL/(N + 1) for j = 1,...,N. Precompute Ax= (kz/L)*for k = 1,...,N.
2. Initial condition. Sample u% = uo(x;) for j = 1,...,N.
3. Time loop: for n=0,1,... until t"*=t"+ At > T do:

a. Forward DST. Compute sine coefficients of the current solution:

N

. 2 . ki .
y, =m2uj Sl“(m)’ Bl

=1
using an FFT-based DST routine.

b. Spectral differentiation. Compute the spatial derivative at grid points using the sine
coefficients:

(Oyu)f = Zﬂf (%) COS(A?TI). ek LN

k=1

Evaluate this cosine series efficiently using a DCT (or via FFT-based routines that

implement the required cosine transform).
c. Form right-hand side (physical space). Define

r =R =Nt (Ozw)f, i =1,1. 4N

d. DST of RHS. Compute the sine coefficients of r:

A krj

—_— T

e = Rul' = Atv (Ou),, .)
(Note:

e. Modal update (implicit diffusion). For each k = 1,...,N compute

gl Tk

- R+AtDA,

f. Inverse DST. Recover the updated physical values using an inverse DST (FFT-based).

N .

- kmyj
oy L =l s - 4 A
o = AE:I uy, hlll(f\r l)’ Jg=1,...,1 N,
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4. End time loop.

Solutions at Final Time t using DST and IMEX Backward = 1.00
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Amplitude Decay for Different a Values
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Time

Figure 5: Ampitude Decay
5. Conclusion

Analytical solutions to fractional diffusion equations, whether linear or nonlinear, pose
significant challenges due to their inherent nonlocality and memory effects. While classical
integral transforms such as the Fourier, Laplace, and Fast Fourier transforms are commonly
employed in solving these equations. We gave analytical solution to the fractional advection-
diffusion equation using spectral approach. The behaviour observed is consistent: as the
fractional order o increases toward 2, the system exhibits characteristics of normal diffusion,
whereas smaller values of o lead to pronounced heavy-tailed distributions, reflecting the
presence of anomalous diffusion.
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