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Abstract: 
In this paper we investigate analytical and numerical approaches for solving fractional 

diffusion and advection–diffusion equations involving the fractional Laplacian operator. Due 

to the inherent complexity of fractional-order models, obtaining closed-form solutions remains 

a challenging task. We use spectral definition of Fractional Laplacian (−∆)α/2 on a bounded 

domain Ω. We use eigenfunctions to find analytical solution. To validate and compare the 

analytical approach, we implement a numerical method based on DST with IMEX Backward 

Euler scheme. We analyze the effect of the fractional order α on the solution profiles. Our 

results indicate that higher values of α approach classical diffusion behavior, while lower 

values exhibit heavy-tailed distributions characteristic of anomalous diffusion. 

1. Introduction: 
The advection–diffusion equation (ADE) serves as a fundamental mathematical tool for 

representing numerous physical systems across pure and applied sciences. Its significance is 

particularly evident in the study of transport phenomena, where it offers a natural and intuitive 

framework. In this context, advection refers to the bulk transport of matter caused by fluid 

motion, while diffusion captures the spontaneous tendency of particles to migrate from regions 

of higher concentration toward regions of lower concentration over time. This equation 

underlies the modeling of diverse real-world processes: movement of atmospheric pollutants 

such as smoke and dust, migration of contaminants in groundwater, dispersion of solutes in 

chemical solvents, intrusion of seawater into freshwater aquifers, and even thermal pollution 

in river systems. Because of these applications, the ADE has become a central subject of 

research across environmental science, heat and mass transfer, chemical engineering, and 

biological modelling. 

Historically, the one-dimensional form of ADE has been widely studied. Classic 

examples include heat transfer in draining films [1], water movement in soils [2], saltwater 

intrusion into aquifers and pollutant transport in rivers [3], pollutant dispersion in shallow lakes 

[4], absorption of chemical species in solid beds [5], cooling of rigid materials by fluid flows 

[6], and thermal pollution in rivers [7]. Different numerical approaches have been employed to 

solve variations of the ADE. El-Baghdady and El-Azab applied the Legendre pseudospectral 

method to parabolic ADEs with variable coefficients and Dirichlet boundary conditions [8]. 

Prabhakaran and Doss developed a finite volume scheme for the one-dimensional case [9]. 

Closed-form approximations for nonlinear heat and mass diffusion equations with Dirichlet 

and Neumann conditions were investigated by Hristov [10]. Buske et al. [11] analyzed a 

coupled Navier–Stokes–ADE system to model pollutant concentration and wind-driven 
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transport using the Adomian decomposition method. Grant and Wilkinson [12] studied a 

homogeneous ADE involving a time-dependent diffusion tensor, drift velocity, and absorbing 

boundaries. 

More recently, interest has shifted toward fractional-order extensions of diffusion 

models. AlRefai [13] investigated both linear and nonlinear fractional differential equations 

and established conditions for solution existence. With the growing prominence of fractional 

calculus, extensive reviews [14–17] have highlighted its role in describing anomalous diffusion 

and memory effects. Two widely used operators, the Riemann–Liouville (R–L) and Caputo 

fractional derivatives, have been shown to capture realistic system dynamics [18–20]. 

However, each presents challenges: the R–L derivative yields physically inconsistent results 

such as a nonzero derivative for constants, while the Caputo derivative—although resolving 

these issues—relies on a singular kernel that complicates computation. 

Within fractional modelling, along with Grunwald–Letnikov and Riemann–Liouville 

definitions, the fractional Laplacian ∆−α/2 where α ∈ (0,2) plays a central role due to its 

multiple equivalent representations [21]. Yet, difficulties arise when the problem is posed on 

bounded domains: in such settings, different mathematical interpretations must be invoked to 

handle boundary conditions [22,23]. The literature, however, has not yet reached agreement on 

which formulation of the fractional Laplacian is the most appropriate for bounded-domain 

applications [28-30]. In this work we use spectral approach of defining Fractional Laplacian. 

This work adopts the Riesz fractional Laplacian approach, following the methodology 

of Li et al. [24], to model long-distance forward and backward tracer transport on a bounded 

domain . We solve the resulting Fractional Advection-Diffusion Equation (FADE) [25] using 

sine eigenfunction expansion and then we use spectral Discrete Sine Transform with IMEX 

(Implicit - Explicit) Backward Euler for numerical comparison. 

This paper investigates analytical and numerical solutions for fractional diffusion 

equations governed by a fractional Laplacian operator. The structure of the paper is as follows: 

Section 2 establishes the mathematical foundation, beginning with the classical diffusion 

equation and extending it to the anomalous case via the fractional Laplacian using spectral 

definition. In Section 3, we give analytical solution to the Fractional Advection-Diffusion 

Equation (FADE) using, while section 4 deals with the numerical solution using Discrete sine 

transform and IMEX Backward Euler technique. We give conclusion in section 5. 
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2. Mathematical Formulation 

2.1 The Classical Diffusion Equation 

A linear diffusion equation over a computational domain Ω is given by [26]: 

 , (1) 

where D is the diffusion coefficient and ∆ represents the Laplacian operator, x is general spatial 

coordinate, t is time and u(x,t) represents concentration at position x in time t. The boundary 

conditions vary as per the model of diffusion. In real situations the conditions could be more 

complex than the usual, such as Dirichlet, Neumann and mixed boundary conditions. 

2.2 Anomalous Diffusion 

For sufficiently smooth and decaying functions u(x,t), the fractional Laplacian is defined as 

an integral operator defined over the domain Rn . It is characterized by its definition as a 

pseudodifferential operator with the symbol |k|α as follows [27]: 

(−∆)α/2u(x) = F−1[|k|αF(u)], α > 0. (2) 

where F represents the Fourier transform applied over the entire space Rn , and F−1 denotes 

Fourier inverse transform. When α = 2 , Equation (2) simplifies to the familiar spectral 

representation of the classical Laplace operator (−∆). 

The fractional Laplacian can be expressed using hypersingular integral as follows [27]: 

. (3) 

where P.V. denotes the principal value integral, Cn,α is normalization constant, which is given 

by  and Γ(z) denotes the gamma function. 

A key implication of Equation (3) is that evaluating the fractional Laplacian (−∆)α/2u(x) at a 

point x ∈ Rn depends on the function u over the entire domain. 

  This global dependence poses a significant challenge for practical applications, where 

tracer transport must be modeled within bounded domains. Unlike its classical counterpart, the 

fractional Laplacian’s theoretical framework and numerical treatment on bounded domains are 

less developed. A primary difficulty is reconciling its inherent nonlocality with finite 

computational domains. This nonlocality introduces complications such as broken translational 

invariance and long-range spatial correlations when boundary conditions are present [28]. One 

common strategy for defining the operator on a bounded domain Ω is to restrict the real-space 

definition in Formula (3) to Ω, resulting in the so-called Riesz fractional Laplacian [21] 
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(4) 

2.3 Definitions and Preliminaries 

Definition 1 (The Schwartz space). The Schwartz space S(Rn) is the space of all smooth 

functions f : Rn → C such that  f and all its derivatives decay faster than the reciprocal of any 

polynomial at infinity. i.e.  

. 

Definition 2 (Fourier Transform). The Fourier transform of a function f(x) ∈ S(Rn) is defined 

as: 

 F{f(x)} = fˆ(ξ) = ∫
 

𝑅𝑛 
f(x)e−2πix·ξ dx. (5) 

Definition 3 (Inverse Fourier Transform). The inverse Fourier transform of a function fˆ(ξ) ∈ 

S(Rn) is defined as: Z 

 F−1{fˆ(ξ)} = f(x) =∫
 

𝑅𝑛 
fˆ(ξ)e2πix·ξ dξ. (6) 

Definition 4. Laplacian (Spectral Definition). Let Ω = (0,L) and consider the Dirichlet 

Laplacian operator −∆ on Ω. The eigenvalue problem is given by 

. (7) 

The normalized eigenfunctions are 

(8) 

with eigenvalues 

. (9) 

The fractional Laplacian (−∆)α/2 with 1 < α ≤ 2 is then defined spectrally as 

. (10) 

Definition 5. Sine Expansion. Any function f ∈ L2(0,L) satisfying homogeneous Dirichlet 

boundary conditions can be expanded in terms of the sine eigenfunctions: 

, (11) 

with Fourier sine coefficients 

(12) 
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Remark 1. Orthogonality. The sine eigenfunctions form an orthogonal basis in L2(0,L), 

satisfying 

 (13) 

Definition 6. Inner Product. The inner product on L2(0,L) is defined by 

(14) 

3. Analytic Solution on a Finite Interval with Dirichlet Boundary 

Conditions 

We consider the space-fractional advection–diffusion equation 

, (15) 

with initial condition  

 C(x,0) = C0(x), x ∈ (0,L), 

and Dirichlet boundary conditions 

(16) 

 C(0,t) = C(L,t) = 0, t > 0, (17) 

where R > 0, v ∈ R, D > 0, and 1 < α ≤ 2. 

Theorem 1. The fractional advection difusion equation given in (15) with initial condition 

(16) and boundary condition (17) satisfies 

. (18) 

Proof. For the finite interval, we expand C(x,t) in the sine eigenfunctions of the Laplacian 

operator with Dirichlet boundary conditions: 

. (19) 

The eigenfunctions satisfy 

, 

so that the fractional Laplacian acts as 

. 

Substituting into the PDE and projecting onto φn, we obtain for each mode: 

, (20) 
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where 

. 

Thus, each coefficient satisfies an ODE: 

(21)  

(22) 

 

where the initial modal coefficient is obtained from the sine expansion: 

 (23) 

Hence, the solution is given by the sine series: 

 

Remark 2. Classical Advection-Diffusion (α = 2) When α = 2, the operator (−∆)α/2 reduces to 

the standard Laplacian, and the modal decay rate simplifies to 

. 

Thus, the solution becomes 

 

This recovers the standard Fourier sine series solution of the classical advection-diffusion 

equation with homogeneous Dirichlet boundary conditions. 

4. Spectral (FFT/DST) solution with IMEX Backward– Euler 

We solve the initial-boundary value problem given by (15),(16) and (17) using spectral DST 

with IMEX Backward Euler. 

4.1 Grid and discrete transforms 

We choose a uniform interior grid with N interior points 

. 

and use the discrete sine transform pair consistent with the sine-eigenbasis for Dirichlet 

boundary conditions. 
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(26) 

(27) 

With this convention the discrete sine modes correspond to the continuous eigenfunctions 

sin(kπx/L) evaluated at xj because sin . 

The spectral derivative is computed from the sine coefficients: 

. (28) 

The spectral action of the spectral fractional Laplacian is diagonal in the sine basis: 

, 

so in coefficient space we have the multipliers 

 

4.2 IMEX Backward–Euler time discretization 

Let un
j ≈ u(xj,t

n) denote the solution at time tn = n∆t. We discretize in time using an IMEX 

Backward–Euler scheme: treat fractional diffusion implicitly and advection explicitly: 

. 

Project (i.e. take the discrete sine transform (26)) of both sides. Using linearity and the 

diagonal action of the fractional Laplacian in the sine basis, we obtain (for each mode k): 

. (29) 

Rearranging gives the explicit formula used in the algorithm: 

. (30) 

Equivalently we can write 

. (31) 
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4.3 FFT/DST algorithm 

1. Set parameters. Choose N (number of interior points), time step ∆t, final time T, grid 

xj = jL/(N + 1) for j = 1,...,N. Precompute Λk = (kπ/L)α for k = 1,...,N. 

2. Initial condition. Sample u0
j = u0(xj) for j = 1,...,N. 

3. Time loop: for n = 0,1,... until tn+1 = tn + ∆t > T do: 

a. Forward DST. Compute sine coefficients of the current solution: 

 

using an FFT-based DST routine. 

b. Spectral differentiation. Compute the spatial derivative at grid points using the sine 

coefficients: 

 

Evaluate this cosine series efficiently using a DCT (or via FFT-based routines that 

implement the required cosine transform). 

c. Form right-hand side (physical space). Define 

 

d. DST of RHS. Compute the sine coefficients of r: 

. 

(Note: 

e. Modal update (implicit diffusion). For each k = 1,...,N compute 

. 

f. Inverse DST. Recover the updated physical values using an inverse DST (FFT-based). 
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4. End time loop. 

 

Figure 1: Using R = 1,v = 0.5 and D = 0.1 and          Figure 2: Using  R = 1.v = 0.2 and D = 

Gaussian Initial Condition    0.1 and   

 

 

Figure 3: Comparison of various α’s 

 

 

 

 

 

 

Figure 4: Comparison at various time 



 

194 
 

VNSGU Journal of Research and Innovation (Peer Reviewed) 

 ISSN:2583-584X                                                                                                                              

Special Issue October 2025 
194 

 

Figure 5: Ampitude Decay 

5. Conclusion 

Analytical solutions to fractional diffusion equations, whether linear or nonlinear, pose 

significant challenges due to their inherent nonlocality and memory effects. While classical 

integral transforms such as the Fourier, Laplace, and Fast Fourier transforms are commonly 

employed in solving these equations. We gave analytical solution to the fractional advection-

diffusion equation using spectral approach. The behaviour observed is consistent: as the 

fractional order α increases toward 2, the system exhibits characteristics of normal diffusion, 

whereas smaller values of α lead to pronounced heavy-tailed distributions, reflecting the 

presence of anomalous diffusion. 
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